Jörg Menche

Vienna, Austria

Jörg Menche is Principal Investigator at the CeMM Research Center for Molecular Medicine in Vienna, Austria. Dr. Menche obtained his PhD at the Max-Planck-Institute for Colloids and Interfaces in Potsdam, specializing in network theory, before undertaking postdoctoral studies at Northeastern University and at the Center for Cancer Systems Biology at Dana Farber Cancer Institute, USA. In close collaboration with Joseph Loscalzo from Harvard Medical School and Marc Vidal from Dana Farber Cancer Institute he applied tools and concepts from network theory to elucidate the complex machinery of interacting molecules that constitutes the basis of (patho-)physiological states. At CeMM, Dr. Menche applies diverse computational approaches to help understand and interpret the large datasets derived from a broad range of post-genomic technologies, ranging from next-generation sequencing of genomes, epigenomes and transcriptomes, to high-throughput proteomics and chemical screening. Two major areas of interest of his research group are network-based approaches to rare diseases and understanding the basic principles of drug-drug interactions.

Wednesday 03 June 09:00

AI in CVD & beyond

Cardiovascular disease poses major clinical and socioeconomic challenges. Technological advances such as whole-genome-sequencing provide complex data to aid in personalized patient care, but these data also require sophisticated interpretation. It is evident that new strategies are needed to address this. Artificial intelligence (AI), also known as machine intelligence, is a branch of computer science that mimics the human mind process, and its application may offer potential to improve clinical management. Specific areas of interest for the use of AI in cardiovascular medicine include the development of diagnostic tools, clinical decision support, quantitative analysis tools and computer-aided detection. In studies, AI has shown promise in automated imaging interpretation and clinical risk prediction, although further refinement and evaluation are still needed.

The integration of AI and cardiovascular medicine requires professional skills, advanced technologies and substantial investment. Despite advances in AI technology, it is imperative that clinicians are the mainstay of management; AI should be viewed as having an enabling role by provision of a set of tools to augment clinical knowledge and experience. AI will drive improved patient care by improving the ability of clinicians to interpret more data and to a greater depth.

Integration of AI offers the prospect of a major revolution in cardiovascular medicine. Societal and ethical complexities of these applications, proof of their medical utility, economic value, and development of interdisciplinary strategies are all relevant for their future application.

Key references

Caldera M, Müller F, Kaltenbrunner I, Licciardello MP, Lardeau CH, Kubicek S, Menche J. Mapping the perturbome network of cellular perturbations. Nat Commun 2019;10:5140.

Sharma A, Halu A, Decano JL, Padi M, Liu YY, Prasad RB, Fadista J, Santolini M, Menche J, Weiss ST, Vidal M, Silverman EK, Aikawa M, Barabási AL, Groop L, Loscalzo J. Controllability in an islet specific regulatory network identifies the transcriptional factor NFATC4, which regulates Type 2 Diabetes associated genes. NPJ Syst Biol Appl 2018;4:25.

Tsiantoulas D, Sage AP, Göderle L, Ozsvar-Kozma M, Murphy D, Porsch F, Pasterkamp G, Menche J, Schneider P, Mallat Z, Binder CJ. B Cell-Activating Factor neutralization aggravates atherosclerosis. Circulation 2018;138:2263-73.